好酷屋

有界函数一定有极限吗 有界函数不一定有极限

好酷屋

发布于2023-02-19

好酷屋教程网小编为您收集和整理了有界函数一定有极限吗 有界函数不一定有极限的相关教程:有界函数不一定有极限,比如函数y=sinx,当x趋于无穷时,极限不存在。有限个有界函数的和、差、积必有界。极限存在只是函数有界的充分条件,而非必要条件,即函数有界但函数极限不一定存在。  如果函数在某

  有界函数不一定有极限,比如函数y=sinx,当x趋于无穷时,极限不存在。有限个有界函数的和、差、积必有界。极限存在只是函数有界的充分条件,而非必要条件,即函数有界但函数极限不一定存在。

  如果函数在某点连续,那么在这个点附近一定有一个邻域,这个邻域中函数是有界的。

  有界函数是设f(x)是区间E上的函数,若对于任意的x属于E,存在常数m、M,使得m≤f(x)≤M,则称f(x)是区间E上的有界函数。其中m称为f(x)在区间E上的下界,M称为f(x)在区间E上的上界。

  有界函数并不一定是连续的。根据定义,ƒ在D上有上(下)界,则意味着值域ƒ(D)是一个有上(下)界的数集。根据确界原理,ƒ在定义域上有上(下)确界。

  一个特例是有界数列,其中X是所有自然数所组成的集合N。由ƒ(x)=sinx所定义的函数f:R→R是有界的。当x越来越接近-1或1时,函数的值就变得越来越大。

  函数的性质:

  1、单调性

  闭区间上的单调函数必有界。其逆命题不成立。

  2、连续性

  闭区间上的连续函数必有界。其逆命题不成立。

  3、可积性

  闭区间上的可积函数必有界。其逆命题不成立。

  相关概念:

  如果一个数列的项数n趋向于无穷大时,数列的极限存在,那么就称这个数列收敛。

  而对于函数,如果一个函数的自变量趋向于X0(或∞)时,它的因变量趋向某个特定值或者趋向∞那么就称函数在X0(或无穷大)处有极限。

  若一个数列收敛,那么这个数列就是有界数列,若一个函数在某点处有极限,那么这个函数在这个点处的去心领域内有界,也就是说局部有界。

以上就是好酷屋教程网小编为您收集和整理的函数,极限,是有相关内容,如果对您有帮助,请帮忙分享这篇文章^_^

本文来源: https://www.haoku5.com/jiaoyu/63f19e1e8fae669b1b0f892d.html

相关推荐

    热门专题